A general procedure for learning mixtures of independent component analyzers
نویسندگان
چکیده
This paper presents a new procedure for learning mixtures of independent component analyzers. The procedure includes non-parametric estimation of the source densities, supervised-unsupervised learning of the model parameters, incorporation of any independent component analysis (ICA) algorithm into the learning of the ICA mixtures, and estimation of residual dependencies after training for correction of the posterior probability of every class to the testing observation vector. We demonstrate the performance of the procedure in the classification of ICA mixtures of two, three, and four classes of synthetic data, and in the classification of defective materials, consisting of 3D finite element models and lab specimens, in non-destructive testing using the impact-echo technique. The application of the proposed posterior probability correction demonstrates an improvement in the classification accuracy. Semi-supervised learning shows that unlabeled data can degrade the performance of the classifier when they do not fit the generative model. Comparative results of the proposed method and standard ICA algorithms for blind source separation in one and multiple ICA data mixtures show the suitability of the non-parametric ICA mixture-based method for data modeling.
منابع مشابه
nr . IAS - UVA - 02 - 01 Procrustes Analysis to Coordinate Mixtures of Probabilistic Principal Component Analyzers
Mixtures of Probabilistic Principal Component Analyzers can be used to model data that lies on or near a low dimensional manifold in a high dimensional observation space, in effect tiling the manifold with local linear (Gaussian) patches. In order to exploit the low dimensional structure of the data manifold, the patches need to be localized and oriented in a low dimensional space, so that 'loc...
متن کاملN ov 2 01 7 Mixtures of Hidden Truncation Hyperbolic Factor Analyzers
The mixture of factor analyzers model was first introduced over 20 years ago and, in the meantime, has been extended to several non-Gaussian analogues. In general, these analogues account for situations with heavy tailed and/or skewed clusters. An approach is introduced that unifies many of these approaches into one very general model: the mixture of hidden truncation hyperbolic factor analyzer...
متن کاملAdaptive Mixtures of Factor Analyzers
A mixture of factor analyzers is a semi-parametric density estimator that generalizes the well-known mixtures of Gaussians model by allowing each Gaussian in the mixture to be represented in a different lower-dimensional manifold. This paper presents a robust and parsimonious model selection algorithm for training a mixture of factor analyzers, carrying out simultaneous clustering and locally l...
متن کاملMixtures of Gaussian Distributions under Linear Dimensionality Reduction
High dimensional spaces pose a serious challenge to the learning process. It is a combination of limited number of samples and high dimensions that positions many problems under the “curse of dimensionality”, which restricts severely the practical application of density estimation. Many techniques have been proposed in the past to discover embedded, locally-linear manifolds of lower dimensional...
متن کاملMixtures of common t-factor analyzers for clustering high-dimensional microarray data
MOTIVATION Mixtures of factor analyzers enable model-based clustering to be undertaken for high-dimensional microarray data, where the number of observations n is small relative to the number of genes p. Moreover, when the number of clusters is not small, for example, where there are several different types of cancer, there may be the need to reduce further the number of parameters in the speci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 43 شماره
صفحات -
تاریخ انتشار 2010